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Abstract 

The present manuscript deals with the study of various entropy measures. The entropy measures can be broadly 

categorized into two sections namely additive measures and non-additive measures. The present manuscript is 

divided into three sections.  In the first section, introduction of entropy measures and definition of entropy is 

given. The second section deals with the various requirements of measures of entropy. In the third section, the 

existing additive measures of entropy known as Renyi’s measure has been studied and all the requirements for 

the measures have been verified  

 

1) Introduction 

Information theory was created by C. Shannon in 1948 so as to address the hypothetical inquiries in media 

communications. In information theory, entropy is a measure of the arbitrariness of a discrete random variable. 

It can likewise be thought of as the uncertainty about the result of an experiment, or the rate of information 

generation by playing out the experiment repeatedly. The idea of entropy was acquainted with giving a 

quantitative measure of uncertainty. 

Shannon [1] determined the measure 𝐻(𝑃) = −∑ 𝑝𝑖 𝑙𝑛 𝑝𝑖
𝑛
𝑖=1  for the uncertainty of a probability distribution 

(𝑝1, 𝑝2, … 𝑝𝑛) and defined it as entropy. The information theoretic entropy can be estimated as far as its error 

from the uniform distribution which is the unsure distribution. Following the Shannon's measure of entropy, 

countless measures of information theoretic entropies have been determined. Renyi [2] described entropy of 

order 𝛼  as 𝐻𝛼(𝑃) =
1

1−𝛼
[
∑ 𝑝𝑖

𝛼𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

⁄ ] , 𝛼 ≠ 1, 𝛼 > 0 , which speaks to a group of measures which 

incorporates Shannon's entropy as a restrictive case as α→1. Later, Kapur [3] summed up Renyi's measure 

further to give a measure of entropy of order ‘α’ and type ‘β’, 𝑣𝑖𝑧.,  

𝐻𝛼,𝛽(𝑃) =
1

1−𝛼
ln [

∑ 𝑝𝑖
𝛼+𝛽−1𝑛

1=1

∑ 𝑝𝑖
𝛽𝑛

𝑖=1

⁄ ] , 𝛼 ≠ 1, 𝛼 > 0, 𝛽 > 0, 𝛼 + 𝛽 − 1 > 1, 

This decreases to Renyi's measure when β=1, to Shannon measure, when𝛽 = 1, 𝛼 → 1. When𝛽 = 1, 𝛼 → ∞, it 

gives the measure 𝐻∞(𝑃) = −𝑙𝑛 𝑃𝑚𝑎𝑥. 

Havrada and Charvat [4] introduced the first non-additive measure of entropy specified by 
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                                         𝐻𝛼(𝑃) =
[∑ 𝑝𝑖

𝛼𝑛
𝑖=1 ]−1

21−𝛼−1
, 𝛼 ≠ 1, 𝛼 > 0. 

To be predictable with Renyi's measure and for numerical comfort, it is utilized in changed structure as 

𝐻𝛼(𝑃) =
1

1 − 𝛼
[∑𝑝𝑖

𝛼 − 1

𝑛

𝑖=1

] , 𝛼 ≠ 1, 𝛼 > 0 

Behara and Chawla [5] characterized the non additive γ-entropy as 

𝐻𝛾(𝑃) =
1 − (∑ 𝑝

𝑖

1
𝛾⁄𝑛

𝑖=1 )

1 − 2𝛾−1
, 𝛾 > 0, 𝛾 ≠ 0 

                                                         =
1

1−2𝛾−1 −
1

1−2𝛾−1 [∑ 𝑝
𝑖

1
𝛾⁄𝑛

𝑖=1 ]𝛾 

Definition 1: The entropy is defined as lack of order or predictability, gradual decline into disorder. In 

thermodynamics, it is characterized as the thermodynamic amount speaking to the inaccessibility of a system's 

thermal energy for transformation into mechanical work, frequently translated as the level of confusion or 

arbitrariness in the system. 

Examples: Ice softening, salt or sugar dissolving, making popcorn and bubbling water for tea are process with 

expanding entropy. 

1.1) Requirements of Measure of Entropy 

Let the probabilities of an possible outcomes 𝐴1, 𝐴2, … 𝐴𝑛 of an experiment be respectively 𝑝1, 𝑝2 …𝑝𝑛 offering 

ascend to the probability distribution 𝑃 = (𝑝1, 𝑝2 …𝑝𝑛); 

∑𝑝𝑖 = 1,

𝑛

𝑖=1

 𝑝1 ≥ 0, 𝑝2 ≥ 0,…𝑝𝑛 ≥ 0 

There is uncertainty with regards to the result when the experiment is done. Any measure of this uncertainty 

should satisfy the following requirements: 

1) It ought be a function of  𝑝1, 𝑝2, … 𝑝𝑛, so that we may write down it as 

𝐻(𝑃) = 𝐻𝑛(𝑝) = 𝐻𝑛(𝑝1, 𝑝2, … 𝑝𝑛) 

2) It ought be uniform function of 𝑝1, 𝑝2, … 𝑝𝑛 i.e. little change in 𝑝1, 𝑝2, … 𝑝𝑛 should cause a little change 

in 𝐻𝑛. 

3) It ought not alter when the outcomes are rearranged among themselves .i.e. 𝐻𝑛 ought to be ordered function 

of its contentions. 

4) It ought not change if an unthinkable result is added to the probability scheme i.e. 
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𝐻𝑛+1(𝑝1, 𝑝2, … 𝑝𝑛, 0) = 𝐻𝑛(𝑝1, 𝑝2, … 𝑝𝑛) 

5) It ought be minimum and possibly zero at the point when there is no uncertainty about the result. Along 

these lines, it ought to disappear when one of the results is sure to occur so that 𝐻𝑛(𝑝1, 𝑝2, … 𝑝𝑛) =

0, ∑ 𝑝𝑖
𝑛
𝑖=1 = 1, ∑ 𝑝𝑗 = 1,𝑚

𝑗=1  𝑗 ≠ 𝑖, 𝑖 = 1,2, … 𝑛 

6) It ought to be greatest when there is a most extreme uncertainty which rises when the results are similarly 

likely so that 𝐻𝑛 should be maximum when 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 = 1
𝑛⁄ . 

7) The greatest estimation of 𝐻𝑛 should increment as n increments. 

8) For two self-determining probability distribution  

𝑃 = (𝑝1, 𝑝2, … 𝑝𝑛), 𝑄 = (𝑞1, 𝑞2, … 𝑞𝑛),∑𝑝𝑖

𝑛

𝑖=1

= 1,∑𝑞𝑗 = 1

𝑚

𝑗=1

 

The uncertainty of the combined scheme 𝑃 ∪ 𝑄 ought to be their addition of their vulnerabilities i.e. 𝐻𝑛𝑚(𝑃 ∪

𝑄) = 𝐻𝑛(𝑃) + 𝐻𝑚(𝑄), where if  𝐴1, 𝐴2, … 𝐴𝑛;  𝐵1, 𝐵2, …𝐵𝑛 are the outcomes of 𝑃 and 𝑄 then the outcomes of 

𝑃 ∪ 𝑄 are 𝐴𝑖, 𝐵𝑗 with probabilities 𝑝𝑖𝑞𝑗(𝑖 = 1,2, … 𝑛, 𝑗 = 1,2, …𝑚). 

2) Main Section  

In this section, we have presented a discussion on the existing additive measure of entropy called Renyi’s 

Measure of Entropy and verified all the requirements for the existing measure:  

Renyi [2] suggested the following measure of entropy: 

𝑅(𝑃) 𝑜𝑟 𝐻𝛼(𝑃) =
1

1−𝛼
𝑙𝑛

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

 ,                                                                                               (1) 

which is called Renyi’s entropy of order α, in this part, we study some of the properties of measure of 

uncertainty and conclude how these measures make Renyi’s measure a most satisfactory measure of entropy. 

(i) Equation (1) is a function of 𝑝1, 𝑝2, … 𝑝𝑛. 

(ii) Consider 𝐻𝛼(𝑃) =
1

1−𝛼
𝑙𝑛

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

 

               =
1

1−𝛼
𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1  

Here, 𝑙𝑛 ∑ 𝑝𝑖
𝛼𝑛

𝑖=1   is a uniform function of  𝑝1, 𝑝2, … 𝑝𝑛 and little change in  𝑝1, 𝑝2, … 𝑝𝑛 cause little change in 

𝐻𝛼(𝑃). 

(iii) 𝐻𝛼(𝑃) is permutationally uniform, it does not alter if   𝑝1, 𝑝2, … 𝑝𝑛 are reordered amongst themselves. 

(iv) The entropy does not alter by the addition of a not possible event i.e. of an event with zero possibility, thus,  
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𝐻𝛼(𝑝1, 𝑝2, … , 𝑝𝑛, 0) =
1

1 − α
ln [∑𝑝𝑖

𝛼

𝑛

𝑖=1

+ 0𝛼] 

                                                        =
1

1−𝛼
𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1  

Therefore, 𝐻𝛼(𝑝1, 𝑝2, … , 𝑝𝑛, 0) = Hα(𝑝1, 𝑝2, … , 𝑝𝑛) 

(v) There are n degenerate distributions 

𝛥1 = (1,0,0, … 0)  

𝛥2 = (0,1,0,… 0)  

… 

… 

… 

𝛥𝑛 = (0,0,0, … 1) 

For every one of these 𝐻𝛼(𝑃) = 0,we imagine that for every one of these distribution, the uncertainty should be 

zero. Renyi satisfies this condition as 𝑙𝑛(1𝛼) = 𝑙𝑛(1) = 0. 

(vi) We use Lagrange’s way to raise the entropy subjected to∑ 𝑝𝑖
𝑛
𝑖=1 = 1, In this case Lagrangian is 

𝐿 =
1

1−𝛼
 𝑙𝑛

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

+ 𝜆(∑ 𝑝𝑖
𝑛
𝑖=1 − 1)  

𝐿 =
1

1−𝛼
 𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1 + 𝜆(∑ 𝑝𝑖

𝑛
𝑖=1 − 1)                                                                                        (2) 

Differentiating equation (2) partially 𝑤. 𝑟. 𝑡. 𝑝1, 𝑝2, … 𝑝𝑛, we get 

𝐿

𝑝1
=

1

1−𝛼

1

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

𝛼𝑝1
𝛼−1 + 𝜆                

 
𝐿

𝑝2
=

1

1−𝛼

1

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

𝛼𝑝2
𝛼−1 + 𝜆   

… 

… 

… 

𝐿

𝑛
=

1

1−𝛼

1

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

𝛼𝑝𝑛
𝛼−1 + 𝜆           
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Equating  
𝐿

𝑝1
,
𝐿

𝑝2
, … 

𝐿

𝑝𝑛
  equal to zero, we get 

 
1

1−𝛼

𝛼𝑝1
𝛼−1

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

=
1

1−𝛼

𝛼𝑝2
𝛼−1

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

= ⋯ =
1

1−𝛼

𝛼𝑝𝑛
𝛼−1

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

 

  𝑝1
𝛼−1 = 𝑝2

𝛼−1 = ⋯ = 𝑝𝑛
𝛼−1 

  𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 

But ∑ 𝑝𝑖
𝑛
𝑖=1 = 1 

 𝑝1 + 𝑝2 + ⋯+ 𝑝𝑛 = 1 

 𝑛𝑝1 = 1[∵ 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛] 

 𝑝1 =
1

𝑛
 

 Thus, 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 =
1

𝑛
 , 

and  𝜆 =
𝛼

1−𝛼

(
1

𝑛
)𝛼−1

∑ (
1

𝑛
)𝛼𝑛

𝑖=1

                                                                                                         

The 2nd order Hessian matrix is 

[
 
 
 
 
 
 
 
 2𝐿

𝑝1
2

2𝐿

𝑝2𝑝1

2𝐿

𝑝1𝑝2

2𝐿

𝑝2
2

 ⋯

2𝐿

𝑝𝑛𝑝1

2𝐿

𝑝𝑛𝑝2

⋮ ⋱ ⋮

2𝐿

𝑝1𝑝𝑛

2𝐿

𝑝2𝑝𝑛

 ⋯
2𝐿

𝑝𝑛
2 ]

 
 
 
 
 
 
 
 

 

To prove the condition of maxima, consider 𝑃 =  (𝑝1, 𝑝2) and assume that 𝛼 = 2 ≠ 1 and 𝛼 > 0. 

Thus, the 2nd order Hessian matrix for case reduces to 

[
 
 
 
 

2𝐿

𝑝1
2


2𝐿

𝑝1𝑝2


2𝐿

𝑝1𝑝2


2𝐿

𝑝2
2 ]

 
 
 
 

 

and value of 𝐿 becomes –  𝑙𝑛 ∑ 𝑝𝑖
22

𝑖=1 + 𝜆(∑ 𝑝𝑖
2
𝑖=1 − 1) 

i.e. 𝐿 = −𝑙𝑛 ∑ 𝑝𝑖
22

𝑖=1 + 𝜆(∑ 𝑝𝑖
2
𝑖=1 − 1)                                                                                                  (3) 

where 𝛹 = 𝑝1 + 𝑝2 − 1    

Differentiating equation (3) partially 𝑤. 𝑟. 𝑡.  𝑝1, 𝑝2, we get 
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𝜕𝐿

𝜕𝑝1
=

−1

∑ 𝑝𝑖
22

𝑖=1

. 2𝑝1 + 𝜆  

𝜕𝐿

𝜕𝑝2
=

−1

∑ 𝑝𝑖
22

𝑖=1

. 2𝑝2 + 𝜆 𝑎𝑛𝑑  
𝜕𝐿

𝜕𝜆
= 𝑝1 + 𝑝2 − 1 

Equating 
𝐿

𝑝1
,
𝐿

𝑝2
,
𝐿

𝜆
 equal to zero, we get 

𝐿

𝑝1
= 0  => 

2𝑝1

∑ 𝑝𝑖
22

𝑖=1

= 𝜆 

𝐿

𝑝2
= 0  => 

2𝑝2

∑ 𝑝𝑖
22

𝑖=1

= 𝜆 

𝜕𝐿

𝜕𝜆
= 𝑝1 + 𝑝2 − 1 = 0  

 𝑝1 = 1 − 𝑝2 

Thus, 
2𝑝1

∑ 𝑝𝑖
22

𝑖=1

=
2𝑝2

∑ 𝑝𝑖
22

𝑖=1

 

 𝑝1 = 𝑝2 

But 𝑝1 + 𝑝1 = 1 

2𝑝1 = 1 

 𝑝1 =
1

2
 

Thus, 𝑝1 = 𝑝2 =
1

2
 and 𝜆 = 2 

Differentiating 
𝜕𝐿

𝜕𝑝1
 𝑤. 𝑟. 𝑡. 𝑝1 𝑎𝑛𝑑 𝑝2, we get 

2 𝐿

𝑝1
2 = −2[

∑ 𝑝𝑖
21−𝑝12𝑝1

2
𝑖=1

(𝑝1
2+𝑝2

2)2
]  

      = −2[
𝑝1+

2 𝑝2
2−2𝑝1

2

(𝑝1+
2 𝑝2

2)2
] 

      = −2[
𝑝2

2−𝑝1
2

(𝑝1+
2 𝑝2

2)2
] 

 = 2[
(𝑝1

2−𝑝2)
2

(𝑝1+
2 𝑝2

2)2
] 

and 
2𝐿

𝑝2𝑝1
=

4𝑝1𝑝2

(𝑝1+
2 𝑝2

2)2
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Differentiating  
𝐿

𝑝2
 𝑤. 𝑟. 𝑡. 𝑝2 𝑎𝑛𝑑 𝑝1, we get 

2 𝐿

𝑝2
2 = −2[

∑ 𝑝𝑖
22

𝑖=1 −𝑝22𝑝2

(𝑝1+
2 𝑝2

2)
2 ]  

       = −2[
𝑝1+

2 𝑝2
2−2𝑝2

2

(𝑝1+
2 𝑝2

2)2
]  

      = −2[
𝑝1

2−𝑝2
2

(𝑝1+
2 𝑝2

2)2
] 

      = 2 [
(𝑝2

2−𝑝1)
2

(𝑝1+
2 𝑝2

2)
2], 

and 
2𝐿

𝑝1𝑝2
=

4𝑝1𝑝2

(𝑝1+
2 𝑝2

2)2
 

Now,
2 𝐿

𝑝1
2 = 0 at 𝑝1 =

1

2
, 𝑝2 =

1

2
 

 
2 𝐿

𝑝2
2 = 0 at  𝑝1 =

1

2
 , 𝑝2 =

1

2
 

2𝐿

𝑝1𝑝2
=

2𝐿

𝑝2𝑝1
= 4  

𝛹

𝑝1
= 1 at  𝑝1 =

1

2
 , 𝑝2 =

1

2
 

𝛹

𝑝2
= 1 at   𝑝1 =

1

2
 , 𝑝2 =

1

2
 

2nd order condition is 

|𝐻2| = |
0 𝛹1 𝛹2

𝛹1

𝛹2

𝐿11

𝐿21

𝐿12

𝐿22

| 

        = |
0 1 1
1
1

0
4

4
0
| = 8 > 0 

So, L has maximum value at  𝑝1 =
1

2
 , 𝑝2 =

1

2
 , on generalizing it, we get 

𝐿 =
1

1−𝛼
𝑙𝑛

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

+ 𝜆(∑ 𝑝𝑖
𝑛
𝑖=1 − 1)  has maximum value at 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 =

1

𝑛
. 

(vii) The maximum value of 𝐻𝛼 is given by  

𝐻𝛼(𝑃) =
1

1−𝛼
𝑙𝑛 ∑ (

1

𝑛
)𝛼𝑛

𝑖=1   
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             =
1

1−𝛼
ln 𝑛 (

1

𝑛
)𝛼  

            =
1

1−𝛼
𝑙𝑛 𝑛1−𝛼 

           =
1

1−𝛼
(1 − 𝛼)𝑙𝑛 𝑛 

           = ln 𝑛  

Since, ln 𝑛 is an rising function of n, so is 𝐻𝑛(α). Thus, there should be a rise in maximum uncertainty when 

more outcomes are possible. 

(viii) Let  𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛) and 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑚) be two self-determining probability distribution of two 

random variables  X and Y so that  𝑃(𝑋 = 𝑥1)  = 𝑝1 , 𝑃(𝑌 = 𝑦𝑖) = 𝑝𝑖𝑞𝑗. 

For the combined distribution of 𝑋 and 𝑌, there are 𝑚𝑛 possible outcomes, with probability 𝑝𝑖𝑞𝑗 for i= 1,2, …𝑛 

and 𝑗 = 1,2, . . . 𝑚 so that for the combined probability distribution which we shall now denote by   𝑝 ∗ 𝑞, the 

entropy is given by  

 𝐻𝑚𝑛(𝑝 ∗ 𝑞) =
𝛼

1−𝛼
𝑙𝑛 ∑ ∑ (𝑝𝑖𝑞𝑗)

𝛼𝑚
𝑗=1

𝑛
𝑖=1  

   =
𝛼

1−𝛼
𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1 ∑ 𝑞𝑗

𝛼𝑚
𝑗=1  

   =
𝛼

1−𝛼
{𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1 + 𝑙𝑛 ∑ 𝑞𝑗

𝛼𝑚
𝑗=1 } 

   =
𝛼

1−𝛼
   𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1 +

𝛼

1−𝛼
𝑙𝑛 ∑ 𝑞𝑗

𝛼𝑚
𝑗=1  

   = 𝐻𝑚(𝑃) + 𝐻𝑚(𝑞) 

For two self-determining distributions, the entropy of the combined distribution is the addition of the entropies 

of the two distributions, which is the desirable property and this is called the additive property of the measure of 

entropy. 

Remark:-The Renyi’s entropy of order α is specified by  

𝑅(𝑃) =
1

1 − 𝛼
𝑙𝑛

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

, 𝛼 ≠ 1, 𝛼 > 0 

         =
1

1−𝛼
𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1  

Therefore, lim
𝛼⇾1

𝑅(𝑃) = lim
𝛼⇾1

1

1−𝛼
𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1            [

0

0
𝑓𝑜𝑟𝑚] 

                      = lim
𝛼⇾1

1

∑ 𝑝𝑖
𝛼𝑛

𝑖=1
∑ 𝑝𝑖

𝛼.𝑙𝑛𝑝𝑖
𝛼𝑛

𝑖=1

−1
, 
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which is the Shannon measure of entropy. Hence, Shannon measure of entropy is the restrictive case of Renyi’s 

measure of entropy. 

3) CONCLUSION 

In the present manuscript, we have verified the various requirements for the existing additive measure of 

entropy and studied about the Renyi’s measure of entropy to answer the theoretical questions in 

telecommunications. The concept was of transferring maximum information through a noisy channel with 

negligible error. But there were some limitations of his theory. Thus, many researchers gave their measures to 

increase the efficiency of transferring information with minimized loss of energy and reducing the error rate of 

data.  

REFERENCES 

[1] Shannon, C.E. (1948): “A mathematical theory of communication”, Bell. Sys. Tech. Jr., 27, 379-423, 623-

659. 

[2] Renyi, A. (1961): “On measures of entropy and information”, Proc. 4thBer. Symp. Math. Stat. and Prob., 1, 

547-561. 

[3] Kapur, J.N. (1967): “Generalized entropy of order α and type β”, Maths.  Semi. 4, 79-84. 

[4] Havrada, J.H. and Charvat, F. (1967): “Quantification methods of classification processes: Concept of 

structural α-entropy”,  Kybernetika, 3, 30-35. 

[5] Behara, M. and Chawla, J.S. (1974): “Generalized γ-entropy”, Selecta Statistica Canadiana, 2, 15-38. 

 

 

 

 

              

 

 

http://www.jetir.org/

